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AbstractÐThe determination of the direction and sense of the resolved shear stress on a generally-oriented
plane is greatly simpli®ed by the use of a graphical technique based on the geometry of the representation
quadric of a `reduced stress tensor'. This tensor is obtained by subtracting a constant equal to s3 from each of
the principal stress values. The calculation requires knowledge of the orientations of the principal stress axes
and the ratio of the principal stress di�erences. A construction for ®nding the direction and sense of ®nite
shear strain on a given plane is derived in an analogous fashion. # 1998 Elsevier Science Ltd. All rights
reserved

INTRODUCTION

Current attempts to use lineated fault planes as data
for palaeostress reconstructions have aroused renewed
interest in the theoretical relationship, derived by
Wallace (1951) and Bott (1959), between the stress ten-
sor and the direction of maximum resolved shear stress
on planes of given orientation. In particular several
graphical techniques have been devised for ®nding the
shear stress direction (Lisle, 1989; Means, 1989;
DePaor, 1990; Ragan, 1990; Fry, 1992; Fleischmann,
1992; Ritz, 1994).
This note describes a new method of graphically de-

riving the direction of shear stress which is probably
the simplest yet devised. In addition it is shown that
the method can be directly adapted to determine the
direction of ®nite shear strain, a problem addressed by
Schwerdtner (1998, this issue).

REPRESENTATION QUADRIC SURFACES AND
DIRECTOR SURFACES

When vectors of two di�erent types are related by
linear equations, the coe�cients of those equations
form a second rank tensor (Nye, 1985; p. 6). A tensor,
a, is used to convert a given or `input' vector, q, into a
resulting or `output' vector, p, according to

p � aq �1�
The stress tensor s, for example, takes an input vector
normal to a plane, n, and converts it to the stress vec-
tor s acting on that plane, by s = sn. The di�ering
orientations of the input and output vectors for a ten-
sor a are portrayed by the representation quadric of
the tensor (Nye, 1985; p. 16). This surface is described
by the equation

a1x
2 � a2y

2 � a3z
2 �21 �2�

and is an ellipsoid or some other quadric surface
depending on the signs of the principal components of
the tensor, a1, a2 and a3. The lengths of the semi-axes
of this surface are 1/Za1, 1/Za2, 1/Za3. If a radius is
drawn for the representation quadric in the direction
of the input vector q, this will meet the surface at a
point where the normal to the surface is parallel to the
output vector p (Fig. 1a). This is known as the radius-
normal property (Nye, 1985; p. 28) which converts the
direction of q into the direction of p.

To convert in the converse manner, i.e. to ®nd q
from a known direction of p, the director surface
(Timoshenko, 1934; p. 185) is used instead of the rep-
resentation quadric. The director surface (Fig. 1b),
described by the equation

aÿ11 x2 � aÿ12 y2 � aÿ13 z2 �21 �3�
has principal axes which are the reciprocal of those of
the representation quadric, i.e. Za1, Za2, Za3.

The radius-normal property of the director surface
uses the known orientation of p (parallel to the radius)
to determine the direction of q (parallel to the normal).
For instance, the radius-normal property of the stress
director surface can be employed to ®nd the orien-
tation of the normal to the plane associated with a
given stress vector (Durelli et al., 1958; p.147).

GRAPHICAL CONSTRUCTION FOR THE SHEAR
STRESS DIRECTION

This construction is based on the representation
quadric of the stress tensor (s). Bott (1959) has shown
that the direction of resolved shear stress is determined
by the ratio of the principal stress di�erences, f,

f � �s2 ÿ s3�=�s1 ÿ s3�: �4�
For the bene®t of the present problem we can subtract
a constant equal to s3 from each principal stress value
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without changing f, i.e. the shear stress directions.
The resulting `reduced' tensor has a representation
quadric with principal semi-axes of lengths

1=
p�s1 ÿ s3�; 1=p�s2 ÿ s3�; 1=p�s3 ÿ s3� � 1; �5�

and is therefore an elliptical or circular cylinder
aligned parallel with the s3 axis (Fig. 2). A conse-
quence of this special geometry of the representation
quadric is that, regardless of the orientation of the
plane's normal, n, the orientation of associated stress
vector s always lies in the s1s2 plane (Fig. 2a). The
exact orientation of s is determined by the radius-nor-
mal relationship that exists in the s1s2 plane between
the projection of n (labelled n') and s (Fig. 2b). It can
be readily shown that the angles between n' and s with
the short axis of the elliptical section (angles yn and ys,
respectively) are related by

tan ys= tan yn � �b=a�2 �6�
where a, b are the long and short semi-axes of the
elliptical section, equal to 1/Z(s2ÿs3), 1/Z(s1ÿs3), re-
spectively.
It therefore follows that

tan ys � f tan yn �7�
Once the direction of s is found with use of
equation (7), the direction of shear stress is ®nally
found as the projection of s onto the given plane.
Summarising, the graphical construction for the

direction of resolved shear stress is performed in the

following steps (Fig. 3): (1) Plot the orientations of the
principal stress axes s1, s2, s3 in stereographic projec-
tion, together with the considered plane as a great cir-
cle and pole, n. (2) Locate the line n' at the
intersection of the s1 s2 plane with the plane contain-
ing s3 and n. (3) Measure the angle yn between n' and
s1 on the stereogram and calculate ys using
equation (7). (4) Plot s in the s1s2 plane at the angle
ys from s1. (5) The resolved shear stress direction (t)
in the given plane is given by the intersection of the
latter with the plane through s and n.

Fig. 1. The transformation of vectors p, q by means of a tensor a,
with principal axes a1, a2 and a3. (a) The radius-normal relationship
of the representation quadric of a describes the orientations of q and
p, respectively. The tangent plane is not the plane on which p acts.
For simplicity, only the a1a2 section of the quadric is drawn. (b) The
radius-normal relationship of the director surface describes the orien-
tations of p and q, respectively. The tangent plane is the plane on

which p acts.
Fig. 2. (a) The representation quadric of the reduced stress tensor.
The stress vector for all planes always lies parallel to the s1s2 plane.
The shaded plane is tangential to the quadric surface. It is not the
plane on which s acts. (b) Angular relations in the s1s2 plane. n' is

the projection of n, the plane's normal. s is the stress vector.

Fig. 3. The stereographic construction for the direction of shear
stress, t on a plane dipping 108 towards 1808. The arrows represent

the shear sense of the hanging wall. See text for explanation.
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In the example shown in Fig. 3, the direction of
shear stress is determined on a plane dipping 108
towards 1808. The known principal stresses, s1, s2, s3
have magnitudes 40, 30 and 20 kPa and plunges 27-
206, 32-096 and 45-327, respectively. The stress ratio
can be found from

f � �s2 ÿ s3�=�s1 ÿ s3� � 0:5: �8�
From known orientations, the angle yn is measured
stereographically to be 588. From equation (7), ys is
calculated as 398, thus allowing S to be plotted. The
derived direction of shear stress pitches 768E.
The sense of shear is determined by drawing two

arrows from the plane normal N on the stereogram; (i)
in the acute arc towards s1 and (ii) in the obtuse arc
towards s3. These arrows indicate the range of feasible
slip senses of the hanging wall. In the example in
Fig. 3, the sense is normal with hanging wall shear to
the south.

DIRECTION OF SHEAR STRAIN

Although shear strain is often used as an index of
the intensity of deformation associated with simple
shear, we should remind ourselves that shear strain is
a generic measure of strain that records the angular
changes associated with any strain history, coaxial or
non-coaxial. Shear strain, like longitudinal strain is a
property of individual material lines. Shear strain g is
de®ned as the tangent of the angle of distortion of an
original right angle de®ned by a material line in ques-
tion and the plane perpendicular to it. Figure 4(a)
depicts a rock with embedded passively-deforming
strain gauges, the latter with the geometry of drawing
pins. After deformation the ¯at heads of most of the

pins will not be perpendicular to their spikes (Fig. 4b).
The angle of distortion is an expression of shear strain
which varies according to the orientation of individual
strain gauges.

Equations for shear strain magnitude g in terms of
the line's orientation relative to the principal axes of
the strain ellipsoid and the principal strain magnitudes
are presented in Jaeger (1962, p. 37) and Ramsay
(1967, p. 128). The direction of shear strain of a line is
de®ned as the direction of its projection on the plane
that was originally perpendicular. In terms of our ima-
ginary drawing pins, the direction of shear associated
with each line parallel to a spike is parallel to the or-
thogonal projection of the spike onto the ¯at head
(Fig. 4b). The structural relevance of the concept of
direction of shear strain is discussed by Schwerdtner
(1998, this issue).

In order to derive expressions for the direction of
shear we consider the geometry of the ®nite strain
ellipsoid in relation to the pre-strain unit sphere
(Fig. 5). The considered line in the undeformed state is
represented by a radius of the unit sphere, R (Fig. 5a).
A plane perpendicular to R forms the tangent plane to
the sphere drawn through the point where R meets the
sphere. The normal to the tangent plane, N, is there-
fore parallel to R. The orientation of R (and therefore
also of N) is speci®ed by direction cosines l, m, n
referred to the axes of the strain ellipsoid S1, S2 and
S3, respectively.

The material line corresponding to R deforms to
give a vector R' with direction cosines l', m', n' where

l 0 � �lS1�=S; m0 � �mS2�=S; n0 � �nS3�=S; �9�
S is the stretch (the ratio of new length to old length)
of the considered line and S1, S2 and S3 are the princi-
pal stretches (Fig. 5b).

Fig. 4. Drawing pins as shear strain gauges. (a) Sphere and shear
strain gauge in the undeformed state. (b) Deformed state; the direc-
tion of shear is the orthogonal projection, onto the deformed plane,

of the line that was the plane's normal in the undeformed state.

Fig. 5. Deformation of a plane and its normal. (a) Undeformed
state; material plane E forms a tangent plane to the sphere. N, the
normal to plane E, is parallel to radius R of the sphere. (b)
Deformed state; E' is the same material plane as E and forms the
tangent plane of the strain ellipsoid. The normal of the deformed
plane, N', has a di�erent orientation to the deformed material line

(R') which formed the normal in the undeformed state.
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The normal to a material line rotates in a similar
manner but controlled by the reciprocal strain ellipsoid
instead of the strain ellipsoid (March, 1932;
Borradaile, 1974) so N becomes N' with direction
cosines l0, m0, n0 where

l00 � �lS�=S1; m00 � �mS�=S2 and n00 � �nS�=S3 �10�
Considering the plane containing R' and N', its normal
has direction cosines, L, M, N given by Gasson (1983,
p. 142) as

L�mn
S2

S3
ÿ S3

S2

� �
; M�nl S3

S1
ÿ S1

S3

� �
; N� lm S1

S2
ÿ S2

S1

� �
�11�

or, in terms of the orientation of the deformed tangent
plane,

L�m
00n00

S2
�S2

2ÿS2
3�; M� l

00n00

S2
�S2

3ÿS2
1�; N� l

00m00

S2
�S2

1ÿS2
2�

�12�
We are interested in the direction of shear which is the
line of intersection of this plane with the plane whose
normal has direction cosines l0, m0, n0. This line with
direction ratios l:m:n is given by the equation in
Gasson (1983, p. 153):

l : m : � � �Mn00 ÿNm00� : �Nl 00 ÿ Ln00� : �Lm00 ÿMl `0�
�13�

To simplify we introduce a parameter d, the ratio of
the di�erences of the quadratic elongations, i.e.

d � S2
2 ÿ S2

3

S2
1 ÿ S2

3

�14�

which leads to:

l :m :�� l 00�l 002�dm002ÿ1� :m00�l 002�dm002ÿd� :n00�l 002�dm002�
�15�

From the last equation it is clear that two factors con-
trol the direction of ®nite shear strain: (a) The orien-
tation of the plane on which the shear direction is to
be determined, i.e. the direction cosines l0, m0, n0 and
(b) the strain ellipsoid's shape parameter d.

GRAPHICAL CONSTRUCTION FOR THE FINITE
SHEAR DIRECTION

The problem in hand involves starting with a plane
of speci®ed orientation de®ned by its normal N' in the
deformed state, and deriving the direction on that
plane corresponding to the projection of line R', the
deformed material line which formed the plane's nor-
mal in the undeformed state. The radius-normal con-
struction using the ®nite strain ellipsoid (Fig. 5b)
serves to ®nd the direction of N0 for a known direction
of R'. The strain ellipsoid is therefore the represen-

tation quadric of some tensor c which converts vector
R' into vector N' i.e. N'= cR'.

The strain ellipsoid has principal semi-axes S1, S2,
S3 and therefore the tensor c it represents must have
principal values 1/S2

1, 1/S2
2, 1/S2

3. This tensor is the
Cauchy deformation tensor (Truesdell and Toupin,
1960; p. 257; Means, 1976; p. 198). Our present task
however is to determine R' from known N', rather
than the converse. Therefore we need to use the direc-
tor surface of c rather than its representation quadric.
It follows that this director surface will have principal
semi-axes of length 1/S1, 1/S2 and 1/S3 oriented paral-
lel to the principal axes of the strain ellipsoid, S1, S2

and S3, respectively. We now employ the same device
as used to solve the shear stress problem.
Equations (14) and (15) show that if the deformation
tensor is modi®ed by subtracting a constant equal to
S2
3 from each principal quadratic elongation, we will

not alter the directions of shear strain. The modi®ed
deformation tensor has principal values of 1/(S2

1ÿS2
3),

1/(S2
2ÿS2

3), 1/(S2
3ÿS2

3) =1, and therefore the associ-
ated director surface is an elliptical cylinder with prin-
cipal semi-axes of lengths of 1/Z(S2

1ÿS2
3), 1/Z(S2

2ÿi S2
3),

1.
The resulting graphical construction (Fig. 6) is

directly analogous to that for the direction of shear
stress. That procedure should be followed with appro-
priate substitution of symbols [s1, s2, s3, f, n, s, yn,
ys] with [S1, S2, S3, d, N', R', yn, yR]. Figure 6 illus-
trates the construction of the direction of shear strain
on a plane dipping 108 towards 1808 for principal
stretches S1=1.25, S2=0.90, S3=0.25 with orien-
tations 27-206, 32-096 and 45-327, respectively. The
direction of shear pitches 768E.

Incidentally, the directions labelled gxn and gzn rep-
resent the shear directions for d = 0 and d = 1, re-

Fig. 6. Construction for the direction of shear strain, g, on a plane
dipping 108 towards 1808. The arrows represent the shear sense of
the hanging wall. See text for explanation. gxn and gzn are the direc-
tions referred to by Schwerdtner (1998); they de®ne the bounds on

admissible orientations of g.
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spectively. As such they represent the extreme orien-
tations of the shear direction; they de®ne bounds for
admissible shear directions (Schwerdtner, 1998).
The sense of shear is determined by drawing two

arrows from the plane normal N' on the stereogram;
(i) in the acute arc towards S3 and (ii) in the obtuse
arc towards S1. These arrows indicate the senses for
the range of feasible shear directions of the hanging
wall. In the example in Fig. 6, the sense is reversed
with hanging wall shear to the north.
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